Korrosionsschutz von Stahl durch Hydro-Beschichtungssysteme

Andreas Gelhaar
Andreas Schneider

1 Allgemeines

Seit vor über 25 Jahren die ersten wasser- und verdünnbaren Beschichtungsstoffe unter der Bezeichnung Hydro-Beschichtungsstoffe auf den Markt gebracht und erfolgreich eingesetzt wurden, sind viele Korrosionsschutzauflagen bevorzugt mit Hydro-Beschichtungsstoffen gelöst worden.

Der wahrscheinlich bekannteste Anwendungsfall ist der Korrosionsschutz von feuerverzinkten Gittermastkonstruktionen, wo durch die guten Haftungseigenschaften von Hydro-Beschichtungen auf Zinküberzügen ein für Duplex-Systeme charakteristischer langlebiger Korrosionsschutz erreicht wird.

Auch im Zuständigkeitsbereich der Bundesanstalt für Straßenwesen (BAS), deren Anforderungen an die Leistungsfähigkeit von Korrosionsschutzsystemen mit einer zu erreichen den Schutzdauer von 25 Jahren über die der DIN EN ISO 12944 hinausgehen, sind Hydro-Beschichtungssysteme sowohl für die Beschichtung von feuerverzinkten Konstruktionen als auch für den Direktauftrag auf Stahloberflächen in den Technischen Lieferbedingungen/Technischen Prüfvorschriften (TL/TP-KOR-Stahlbauten [2]) enthalten:
- Blatt 91: Wasserdurchlässige Beschichtungsstoffe auf Acrylat- oder Acryl-Copolymerisat-Grundlage für feuerverzinkten Stahl
- Blatt 92: Wasserdurchlässige Beschichtungsstoffe auf Acrylat- oder Acryl-Copolymerisat-Grundlage für unverzinkten Stahl

Die korrosionsschutztechnische Gleichwertigkeit von Hydro-Beschichtungssystemen im Bereich bis zu einer Korrosivitätskategorie C4 wird durch eine Reihe anwendungstechnischer Vorteile ergänzt, die sich zusammenfassend wie folgt beschreiben lassen:
- Die charakteristischen filmtechnischen Eigenschaften zeichnen sich durch ein dauerelastisches Verhalten auch nach langer Betriebsdauer und eine geringe Kratz- und Verschleißfestigkeit aus.
- Auf feuerverzinkten Bauteilen werden gute Haftungseigenschaften auch ohne eine Vorbereitung der Oberfläche durch Sweepen erreicht.
- Der geringe VOC-Gehalt (< 5 Masse-%) ist die beste Lösung zur Umsetzung der bestehenden Gesetzgebung über die Emission flüchtiger organischer Verbindungen VOC (volatile organische compound).
- Die Anforderungen der Gesundheits- und Arbeitsbühnen lassen sich einfach realisieren.

2 Ergebnisse der Begutachtung

Bei der Begutachtung eines Korrosionsschutzsystems nach mehrjähriger Nutzungsdauer sind für eine realistische Zustandsbewertung verschiedene Einflussfaktoren zu berücksichtigen:
- Wurde der Korrosionsschutz wie geplant ausgeführt?
- Entspricht der spezifizierten Korrosionsschutz den tatsächlichen Anforderungen?
- Sind vorhandene Korrosionserhebungen auf Ausführungsfehler oder die Belastungen während der bisherigen Objektnutzung zurückzuführen?
Tabelle 1. Begutachtete Objekte mit Hydro-Beschichtungssystemen

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Korrosivitäts-</th>
<th>Ausführungs-</th>
<th>Spezifizierter Korrosionsschutz</th>
<th>Merkmale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Badenova-Stadion SC Freiburg Südtribüne</td>
<td>C2/C3</td>
<td>1995</td>
<td>230 µm Beschichtung</td>
<td>Städtischer Bereich</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Konstruktion teilweise überdacht</td>
</tr>
<tr>
<td>TREA Breisgau MäIverbrennungsanlage</td>
<td>C3/C4</td>
<td>2003/04</td>
<td>200 µm Beschichtung Erstschutz</td>
<td>Innenraum-belastung</td>
</tr>
<tr>
<td></td>
<td>Im Bereich über Hallenflur C5</td>
<td></td>
<td></td>
<td>Bis ca. + 3 m Belastung durch Chemikalien (Salzsäure)</td>
</tr>
<tr>
<td>ENBW 110-kV-Leitung</td>
<td>C2/C3</td>
<td>1984</td>
<td>Feuer-verzinkung + Beschichtung Erstschutz</td>
<td>Ländlicher Bereich</td>
</tr>
<tr>
<td>ENBW 110-kV-Leitung Rheinau-Altlaußheim</td>
<td>C2/C3</td>
<td>2004</td>
<td>160 µm Beschichtung Instandsetzung auf Handentrostung</td>
<td>Ländlicher Bereich</td>
</tr>
<tr>
<td>Deutsche Bahn Fahrbahnleitung Strecke Mannheim-Stuttgart</td>
<td>C2/C3</td>
<td>1990/91</td>
<td>Feuerverzinkung + 90 µm Beschichtung Erstschutz</td>
<td>Ländlicher Bereich</td>
</tr>
<tr>
<td>BASF AG Außenbeschichtung Tanklager</td>
<td>C4</td>
<td>1984</td>
<td>180 µm Beschichtung Erstschutz</td>
<td>Industriegebiet</td>
</tr>
<tr>
<td>Schwebebahn Dresden</td>
<td>C2/C3</td>
<td>2003</td>
<td>Beschichtung Erstschutz</td>
<td>Städtischer Bereich</td>
</tr>
</tbody>
</table>

An den Prüfstellen mit einer Schichtdicke über 250 µm wurde das System durch eine verschärfte Prüfung mit einem Schnittabstand von 1 mm getestet, der nach o. g. Norm nur bis Schichtdicken von 60 µm anzuwenden ist. Das Ergebnis eines Kennwertes von Gt 2 belegt höchst eindrucksvoll die auch nach 20 Jahren noch vorhandenen dauerelastischen Eigenschaften des Beschichtungssystems (Bild 3).

An der ebenfalls nunmehr bereits 24 Jahre alten Duplex-Beschichtung des ENBW-Mastes wurde ein ebenfalls ausgesprochen guter Zustand festgestellt.

Die Haftungseigenschaften der Duplex-Beschichtung, bei der Schichtdicken von ca. 100 bis 120 µm ermittelt wurden, wiesen vergleichbare gute Kennwerte wie die Tankbeschichtung auf. Die bei der Abreißprüfung ermittelten Haftfestigkeitswerte von 5 bis 7 MPa bei Kohäsionsbrüchen in der Beschichtung sind für eine Beschich-
tung mit diesem Alter als bemerkenswert gut zu bewerten (Bild 4).

Der an zwei von vier Prüfstellen zu verzeichnende anteilige Trennfaktor der Einhaftung der Beschichtung vom Zinküberzug ist nicht als Schwäche des Systems zu bewerten, sondern belegt die Notwendigkeit eines den Anforderungen entsprechenden Zustandes des Zinküberzuges, wenn die Beschichtung, wie zum damaligen Stand der Technik üblich, erst nach einer Bewitterung des Zinküberzuges appliziert wird (Bild 5).

ausschließlichem Trennfall Kohäsionsbruch, was mit dem visuell guten Zustand korreliert.

Am Beispiel der Freileitungsmaste der ENBW-Trasse Rheinai-Altlußheim wird die spezielle Eignung von Hydro-Beschichtungen für die Sanierung von Altbeschichtungen deutlich. Hier wurde 2004 auf einem Altbeschichtungssystem mit insgesamt bis zu sechs Einzelschichten und einer Schichtdicke von ca. 500 μm eine Hydrobeschichtung ausgeführt, wobei vorhandene Roststellen durch Handentrostung zum Vorbereitungsgrad PS1.2 vorbereitet wurden. Die Mastbeschichtung war in einem visuell guten Zustand und wies keine, insbesondere für Altbeschichtungen typischen Schadensmerkmale wie Risse oder Abblättermale auf (Bild 13).

Bei der Überprüfung der Haltung der vorliegenden Altbeschichtung wurde ein recht geringer Haftfestigkeitswert von ca. 2 MPa ermittelt. In Verbindung mit der durchgeführten Gitterschnittprüfung wurde deutlich, dass die vorhandenen Altbeschichtung in einem sehr labilen Zustand ist. Hier wurden die Vorteile der Hydro-Beschichtungen zur Sanierung der vorhandenen labilen Altbeschichtung sehr gut sichtbar. Eine lösemittelhaltige Instandsetzungbeschichtung stellte der verwendeten Hydro-Beschichtung hätte hier mit hoher Wahrscheinlichkeit zum Anlösen geführt und durch die damit verbundene Ausbildung von Rissen und Abblätterungen den Instandsetzungserfolg verhindert. Bemerkenswerte gute Haftfestigkeitswerte von ca. 5 MPa wurden in Bereichen ermittelt, in denen die Hydro-Beschichtung direkt auf die handentrostete Oberfläche (PS1.2-3) appliziert wurde. Als Trennfall war jeweils ein Kohäsionsbruch in der Instandsetzungbeschichtung zu verzeichnen (Bild 14a und b). Dieser Be-
fand unterstreicht recht eindrucksvoll die guten Ergebnisse für Hydro-Beschichtungen auch für Instandsetzungszwecke, sowohl für die Überarbeitung von Altbeleuchtungen als auch für handentrostete Untergründe.

Eine Kombination von Erschütterung und Instandsetzung mit Hydrobeschichtungsstoffen ist an den Masten der Dresdner Schwebebahn unmittelbar in Nähe des Blauen Wunders vorhanden. Hier wurde in den Jahren 2001 und 2002 am Fahrbahnträger (1) und obersten Querriegel (2) der Korrosionsschutz erneuert. An den Pendel- und Tragwerkstützen (3) erfolgte eine Instandsetzung des aus Spritzverzinkung und Beschichtung bestehenden Altsystems (Bilder 15a und b). Der insgesamt gute visuelle Zustand des Korrosionsschutzes in allen Bereichen ist insbesondere in den Anschlussbereichen durch keinerlei Spaltkorrosion charakterisiert, auch wenn dafür prädestinierte Bereiche (→) bei den Sanierungsarbeiten nicht immer konsequent abgedichtet wur-

3 Zusammenfassung und Schlussfolgerungen

Seit nunmehr gut 25 Jahren werden für den Korrosionsschutz von Stahlbauten Hydro-Beschichtungsstoffe eingesetzt. Im Auftrag des Beschichtungs-

stoffherstellers GEHOLIT + WIEMER wurde an sieben verschiedenen Objekten eine korrosionsschutztechnische Zustandsbewertung der ausgeführten Hydro-Beschichtung vorgenommen. Bestandteil der Begutachtung waren eine visuelle Prüfung und die stichprobenartige Durchführung von Haftungsprüfungen.

Die ermittelten Ergebnisse lassen sich wie folgt zusammenfassen:

- Unabhängig vom Alter der untersuchten Objekte (zwischen 4 und 24 Jahren), wurde an allen Bauwerken ein guter bis sehr guter korrosionsschutztechnischer Zustand vorgefunden.

- Hydro-Beschichtungen sind für die Instandsetzung von Altbeschichtungen mit häufig grenzwertigen Haftungskennwerten gut geeignet.

- Auf feuerverzinkten Bauteilen wird auch ohne eine Vorbereitung der Oberfläche durch Sweepen eine sehr gute Haftung der Beschichtungen erreicht.

- An den besprochenen Objekten wurden keine Kreidungsscheinungen festgestellt.

Zusammenfassend ist im Ergebnis der durchgeführten Begutachtungen festzustellen, dass leistungsfähige Hydro-Beschichtungsstoffe in den unterschiedlichsten Einsatzgebieten eine echte Alternative für die konventionellen lösemittelhaltigen Beschichtungsstoffe darstellen. Insbesondere für die Instandsetzung von Hydro-Beschichtungen eine sichere Alternative mit technischen Vorteilen gegenüber lösemittelhaltigen Beschichtungsstoffen dar. Speziell auch im Hinblick auf die VOC-Problematik wird dabei in DIN 12944-5, Ausgabe 01/2008 [4], auf die bestehenden Vorzüge von Hydro-Beschichtungsstoffen und die Eignung für den Einsatz in nahezu allen atmosphärischen Korrosivitätskategorien hingewiesen.

Literatur

Autoren dieses Beitrages:
Dipl.-Ing. Andreas Gelhaar und Dipl.-Chem. Andreas Schneider, Institut für Stahlbau Leipzig GmbH, Handelsplatz 2, 04319 Leipzig